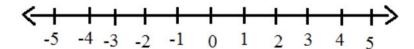
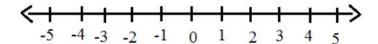
Mindful Moment

- Take 2 minutes to relax silently
- Pencils down
- You can meditate at your seat, put your head down, etc.

Do Now


- Silent and independent Do Now
- Turn in your homework at the back
- Do your best, I will mark that you made an effort!


Do Now

Re-write the following mixed numbers at the sum of two numbers. Draw a visual model on the number line as well.

1.
$$2\frac{1}{2} =$$

2.
$$-2\frac{1}{2} =$$

Speed Drill

Simplify the expressions.

$$(1)$$
 $(^{-1}) + 2 =$

$$(2)$$
 $(^{-}25) \div (^{-}5) =$

(3)
$$16 \div (^-4) =$$

$$(4) (-4) \times 4 =$$

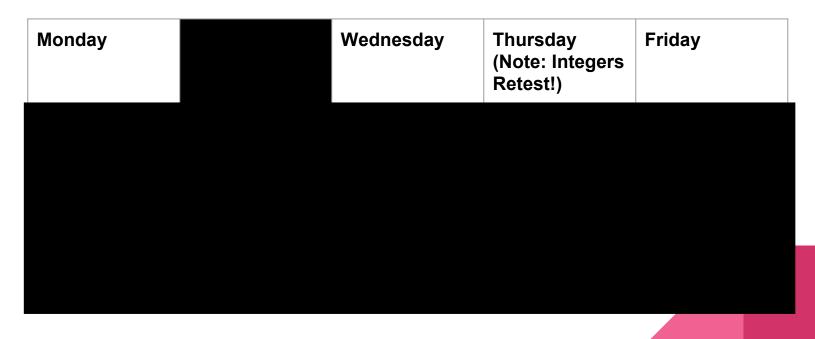
$$(5)$$
 3 + 2 =

$$(6)$$
 1 + 10 =

$$(7) (-8) \div 2 =$$

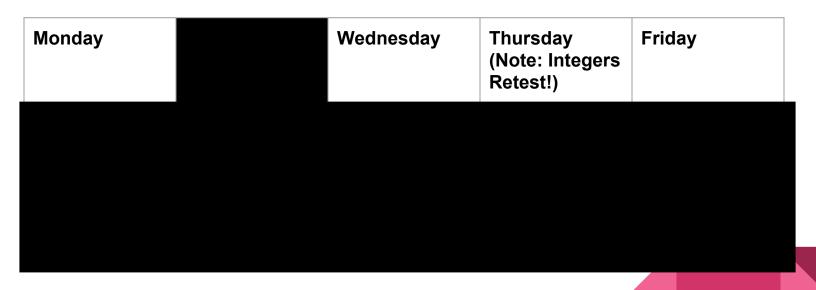
$$(8)$$
 $(^{-4})$ + $(^{-8})$ =

$$(9) (-11) + (-1) =$$


$$(10)$$
 6 - $(^{-}1)$ =

$$(11)$$
 15 ÷ 3 =

(12)
$$(^{-}20) \div 5 =$$


Ms. Elise Groups- Period 3

Some people may go more than once based upon Ms. Elise's focus list group. Everyone will see Ms. Elise at least once a week.

Ms. Elise Groups-Period 4

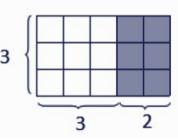
Some people may go more than once based upon Ms. Elise's focus list group. Everyone will see Ms. Elise at least once a week.

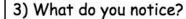
Ms. Elise Groups- Period 6

Some people may go more than once based upon Ms. Elise's focus list group. Other people will still work with Ms. Elise

Monday	Wednesday	Thursday (Note: Integers Retest!)	Friday

Partner Work Example 1: Distributive Property


with Numbers


Example 1: Distributive Property with Numbers

Evaluate each of the following.

(Note:
$$4(5) = 4 \cdot 5 = 4 \times 5$$
)

2)
$$3(3+2) =$$

Distributive Property with Variables: Notes

Visual Model		Algorithm
Draw an array for $3(x + 2)$.	3 { x 2	
3(x+y)	$3\left\{ \begin{array}{ c c c} 3x & 3y \\ \hline x & y \end{array} \right.$	

Turn, Talk, and Write

Alexander says that 3x + 4y is equivalent to (3)(4) + xy because of any order, any grouping. Is he correct? Why or why not?

Group Practice

Example 5

Expand the expression 4(x + y + z).

Write the expressions in standard form.

a.
$$\frac{1}{4}(4x+8)$$

b.
$$\frac{1}{6}(r-6)$$

b.
$$\frac{1}{6}(r-6)$$

c. $\frac{4}{5}(x+1)$

Practice and Score

Practice and Score

19)
$$7(-4+6x)$$

20)
$$3(6p+2)$$

e.
$$\frac{3}{4}(5x-1)$$

Kahoot!

Kahoot Game 1: Proportionality

Integer Operations

Proportionality Quiz #2